\(\int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [644]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 239 \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {16 b \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+23 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}} \]

[Out]

16/15*b*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b
))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+2/5*a^2*sin(d*x+c)*(a+b*sec
(d*x+c))^(1/2)/d/sec(d*x+c)^(3/2)+22/15*a*b*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)+2/15*(9*a^2+2
3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(
a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3926, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {16 b \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+23 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 a^2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\sec (c+d x)}} \]

[In]

Int[(a + b*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(5/2),x]

[Out]

(16*b*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])
/(15*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2 + 23*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c
+ d*x]])/(15*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*a^2*Sqrt[a + b*Sec[c + d*x]]*Sin[c
+ d*x])/(5*d*Sec[c + d*x]^(3/2)) + (22*a*b*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3926

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {\frac {11 a^2 b}{2}+\frac {3}{2} a \left (a^2+5 b^2\right ) \sec (c+d x)+\frac {1}{2} b \left (2 a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}-\frac {4 \int \frac {-\frac {1}{4} a^2 \left (9 a^2+23 b^2\right )-\frac {1}{4} a b \left (17 a^2+15 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{15 a} \\ & = \frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}-\frac {1}{15} \left (-9 a^2-23 b^2\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{15} \left (8 b \left (a^2-b^2\right )\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {\left (8 b \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{15 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-9 a^2-23 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{15 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {\left (8 b \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{15 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-9 a^2-23 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{15 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {16 b \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+23 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.16 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.84 \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {(a+b \sec (c+d x))^{5/2} \left (4 \left (9 a^3+9 a^2 b+23 a b^2+23 b^3\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+32 b \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+2 a \left (3 a^2+22 b^2+28 a b \cos (c+d x)+3 a^2 \cos (2 (c+d x))\right ) \sin (c+d x)\right )}{30 d (b+a \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[(a + b*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(5/2),x]

[Out]

((a + b*Sec[c + d*x])^(5/2)*(4*(9*a^3 + 9*a^2*b + 23*a*b^2 + 23*b^3)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Ellipt
icE[(c + d*x)/2, (2*a)/(a + b)] + 32*b*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (
2*a)/(a + b)] + 2*a*(3*a^2 + 22*b^2 + 28*a*b*Cos[c + d*x] + 3*a^2*Cos[2*(c + d*x)])*Sin[c + d*x]))/(30*d*(b +
a*Cos[c + d*x])^3*Sec[c + d*x]^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2566\) vs. \(2(269)=538\).

Time = 6.50 (sec) , antiderivative size = 2567, normalized size of antiderivative = 10.74

method result size
default \(\text {Expression too large to display}\) \(2567\)

[In]

int((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/15/d/((a-b)/(a+b))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(5/2)/(cos(d*x+c)+1)*(-34*(1/(co
s(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-c
sc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*sec(d*x+c)-30*sec(d*x+c)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(
d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3+46*
(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*
x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)+18*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*sec(d*
x+c)-46*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)
*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)-17*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*
b*sec(d*x+c)^2+23*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a
+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)^2+9*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^
(1/2))*a^2*b*sec(d*x+c)^2-23*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elliptic
E(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)^2+3*((a-b)/(a+b))^(1/2)*a
^3*sin(d*x+c)+9*((a-b)/(a+b))^(1/2)*a^3*tan(d*x+c)-15*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-
(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)^2-
15*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+
b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3-18*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*sec(d*x+c)+46*(1/(
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)
-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^3*sec(d*x+c)+18*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d
*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*sec(d*x+c)-17*
(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*
x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b+23*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2+9*(1/(cos(d*x+c)+
1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*a^2*b-23*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elli
pticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2+9*(1/(cos(d*x+c)+1))^(1/2)*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b)
)^(1/2))*a^3*sec(d*x+c)^2-9*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE
(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*sec(d*x+c)^2+23*(1/(cos(d*x+c)+1))^(1/2
)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b
)/(a-b))^(1/2))*b^3*sec(d*x+c)^2+9*((a-b)/(a+b))^(1/2)*a^2*b*tan(d*x+c)*sec(d*x+c)+11*((a-b)/(a+b))^(1/2)*a*b^
2*tan(d*x+c)*sec(d*x+c)+9*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((
(a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3-9*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*
a^3+23*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*
(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^3+14*((a-b)/(a+b))^(1/2)*a^2*b*sin(d*x+c)+3*((a-b)/(a+b))^(1/2
)*a^3*cos(d*x+c)*sin(d*x+c)+23*((a-b)/(a+b))^(1/2)*b^3*tan(d*x+c)*sec(d*x+c)+14*((a-b)/(a+b))^(1/2)*a^2*b*tan(
d*x+c)+34*((a-b)/(a+b))^(1/2)*a*b^2*tan(d*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 462, normalized size of antiderivative = 1.93 \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-33 i \, a^{2} b + i \, b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (33 i \, a^{2} b - i \, b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (-9 i \, a^{3} - 23 i \, a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (9 i \, a^{3} + 23 i \, a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + \frac {6 \, {\left (3 \, a^{3} \cos \left (d x + c\right )^{2} + 11 \, a^{2} b \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{45 \, a d} \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/45*(sqrt(2)*(-33*I*a^2*b + I*b^3)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^
3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(33*I*a^2*b - I*b^3)*sqrt(a)*weierstras
sPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2
*b)/a) - 3*sqrt(2)*(-9*I*a^3 - 23*I*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8
*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3
*I*a*sin(d*x + c) + 2*b)/a)) - 3*sqrt(2)*(9*I*a^3 + 23*I*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a
^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*
(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)) + 6*(3*a^3*cos(d*x + c)^2 + 11*a^2*b*cos(d*x + c))*sqrt((a*c
os(d*x + c) + b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))**(5/2)/sec(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((a + b/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(5/2),x)

[Out]

int((a + b/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(5/2), x)